

A.H. LUNDBERG SYSTEMS LIMITED SOLUTIONS FOR THE PULP & PAPER INDUSTRY

- Engineering
- ENERGY
- ENVIRONMENTAL
- EVAPORATION
- EQUIPMENT

HEAT EXCHANGER EVALUATION

CASE STUDIES & A BIT OF THEORY BY BRUCE DER

PRESENTED TO PAPTAC STEAM, STEAM POWER, & ENERGY COMMITTEE JOINT MEETING DECEMBER 6, 2006

YOUR HEAT EXCHANGER SITUATION

- EXISTING UNIT NEEDS **EVALUATION**
- EXISTING UNIT NEEDS **UPGRADE OR** RECONFIGURATION
- USED UNIT IN NEW **APPLICATION**
- NEW UNIT IN NEW **APPLICATION**

EXISTING HEAT EXCHANGER OPTIONS

- RECONFIGURATION CHANGE PROCESS, CHANGE SIDES
- RETROFIT MODIFY UNIT: NUMBER OF PASSES, NEW TUBE BUNDLE, ADD PLATES
- AUGMENTATION ADD SURFACE AREA
- REPLACEMENT NEW UNIT

HEAT EXCHANGER EVALUATION - THEORY

FOURIER GENERAL EQUATION

 $Q = U A \Delta t$

Q = HEAT FLOW, BTU/h

U = OVERALL HEAT TRANSFER COEFFICIENT, BTU/hft²°F

A = HEAT TRANSFER SURFACE, ft²

Δt = LMTD OR LOGARITHMIC MEAN TEMPERATURE DIFFERENCE, °F

Q = HEAT FLOW

Q = m * c_p * (T₁ - T₂) m = mass flow, lb/h

C_p = specific heat, BTU/lb°F

 T_1 = inlet hot side fluid temperature

 T_2 = outlet hot side fluid temperature

U = OVERALL HEAT TRANSFER COEFFICIENT

- CAN BE U_o (OUTSIDE) OR U_i (INSIDE)
- U₀ = inverse sum of resistances

$$= 1/(1/h_o + 1/h_{io} + R_w + R_d)$$

h_o = outside film coefficient

h_{io} = inside film coefficient

 R_w = resistance of wall

 R_d = fouling resistance

A = HEAT TRANSFER SURFACE

- CAN BE A_o (OUTSIDE) OR A_i (INSIDE)
- EVAPORATORS USUALLY A_i, SC A_o
- OTHER SERVICES USUALLY A_o
- DIFFERENCE ON 1" x 18 ga (0.049") TUBE IS 1 (1 -2*0.049)/1 = 9.8%

$\Delta t = LMTD$: COUNTERCURRENT

$$\Delta t = \frac{(T_1 - t_2) - (T_2 - t_1)}{\ln (T_1 - t_2) / (T_2 - t_1)}$$

WBL COOLER COUNTER-CURRENT

HOT SIDE (LIQUOR)

 $212 \to 185$

COLD SIDE (WATER)

 $160 \leftarrow 110$

DIFFERENCE

52 - 75 = -23

$$LMTD = -23 / LN (52/75) = 62.8$$
°F

$\Delta t = LMTD$: CO-CURRENT

$$(T_1 - t_1) - (T_2 - t_2)$$

 $\Delta t = ------$

$$\ln (T_1 - t_1) / (T_2 - t_2)$$

EXAMPLE: WBL COOLER CO-CURRENT

HOT SIDE (LIQUOR) $212 \rightarrow 185$

COLD SIDE (WATER) $110 \rightarrow 160$

DIFFERENCE 102 - 25 = 77

LMTD = 77 / LN (102/25) = 54.8°F

h_o= OUTSIDE LIQUID FILM COEFFICIENT

```
a_s = ID * C' * B / 144 / P_T
G_S = W / a_s
Re_S = D_e * G_s / \mu
Using Re_S, get j_H from Kern, Figure 28
h_o = j_H * k / D_e * (c*\mu/k)^{(1/3)} * (\mu/\mu w)^{0.14}
```


h_{io} = INSIDE LIQUID FILM COEFFICIENT

```
a_t = no.tubes * flow area/tube / passes G_t = w / a_t Re_t = D * G_t / \mu Using Re_t, get j_H from Kern, Figure 24 h_i = j_H * k / D * (c*\mu/k)^{(1/3)} * (\mu/\mu w)^{0.14} h_{io} = h_i * tube ID / tube OD
```


TYPICAL FILM COEFFICIENTS

- STEAM ~ 1500 BTU/hft²°F, LIMITED BY HEAT FLUX
- WATER ~ 200 TO 1000 BTU/hft²°F, DEPENDENT ON VELOCITY
- AIR ~ 10 BTU/hft²°F, DEPENDENT ON TURBULENCE/VELOCITY

2/4/2007 14

WALL RESISTANCE

	T/K = THICKNESS / CONDUCTIVITY
304 SS X 18 GAUGE	0.049 / 108 = 0.00045
316 SS X 18 GAUGE	0.049 / 98.4 = 0.0005
TITANIUM X 20 GAUGE	0.035 /147.6= 0.00024

2/4/2007 15

CALCULATING OVERALL Uo

```
EXAMPLE: KAMYR SEC BLACK LIQUOR COOLER

TUBE SIDE = WEAK LIQUOR

SHELL SIDE = WATER

U_o = inverse sum of resistances

= 1/(1/h_o + 1/h_{io} + R_w + R_d)

= (1/748 + 1/1071 + 0.00045 + 0.003)^{-1}

= 1 / 0.00572 = 175
```

TUBE SIDE PRESSURE DROP EQUATIONS

 $f * G_{t}^{2} * L * n$

5.21 X $10^{10} *D *s *(\mu/\mu w)^{0.14}$

4 * n * V² * 62.43

s * 2 * g' * 144

SHELL SIDE PRESSURE DROP EQUATION

RULES OF THUMB

- CONDENSERS IN SERIES OR PARALLEL → SAME
- MULTIPLE PASS LIQ TO LIQ → MUST BE IN SERIES
- MTD CORRECTION FACTOR > 0.80
- TRIANGULAR PITCH → COMMON, LOW IN COST, CANNOT CLEAN TUBES
- SQUARE TUBE PITCH → BIGGER DIAMETER, MORE \$, CAN CLEAN TUBES
- COMMON TUBES → 1" X 18 GA, 1.25" X 16 GA
- LONGER TUBES → GENERALLY LOWER IN COST
- SMALLER TUBES → SMALLER DIAMETER, LOWER IN COST
- MORE SHELLS → MORE COST

RULES OF THUMB

- MORE BAFFLES → BETTER HEAT TRANSFER, BETTER TUBE SUPPORT, BUT MORE dP
- IF V < 3 FPS, DIRT & SLIME FROM MICRO-ORGANIC ACTION ADHERES TO TUBE WALLS THAT WOULD OTHERWISE BE CARRIED AWAY WITH HIGHER VELOCITIES

HEAT EXCHANGER EVALUATION – CASE STUDIES

1. SURFACE CONDENSER ADDITION

ISSUES

- HEAT TREATED WATER TO DEAERATORS
- EXISTING CONCENTRATOR SURF COND → ADD BEFORE OR AFTER, IN SERIES OR IN PARALLEL?

SC ADDITION - FLOWSHEET

SC ADDITION – KEY DESIGN ISSUES

- HEAT TREATED WATER TO GOOD TEMP, 140 → 190°F
- TOO MUCH VAPOUR → BYPASSED 40% VIA BUSTLE, BALANCED PRESSURE DROPS TO BUNDLE & AROUND BUSTLE
- VAPOUR LINE PRESSURE DROP → OVERSIZED LINE
- TUBE VIBRATION → ANALYSIS, SUPPORT BAFFLES

2/4/2007 24

SC ADDITION - RESULTS

- 6 TUBE PASSES

• Q = 32 MM BTU/H Ao = 4008 FT²,1 SHELL

PD = 5.8 PSI

2. GREEN LIQUOR COOLER REPLACEMENT

ISSUES

- EXISTING UNIT UNDERSIZED → COOLING WATER TEMP TOO LOW, POOR HEAT RECOVERY
- TUBE PLUGGING

2/4/2007 26

GLC REPLACEMENT - FLOWSHEET

GLC REPLACEMENT - KEY DESIGN ISSUES

- PLUGGING → USE LARGER TUBES 5/8 → 1"
- CLEANING → REASONABLE LENGTH OF TUBE 14 FT
- HIGH QUALITY PROC WATER → EXISTING 100°F, NEW 158°F
- DIFFERENTIAL EXPANSION → EXPANSION JOINT ADDED

GLC REPLACEMENT - RESULTS

	NEW	EXISTING
Q MMBTU/H	5.3	2.8
AREA FT ²	553	144
TUBES	1" x 18 BWG	5/8" x 18 BWG

3. STRIPPER PREHEATER RECONFIGURATION

ISSUES

- TUBE SIDE FOULING AFTER 2 TO 3 WEEKS OPERATION → LOSS OF HEAT TRANSFER. WHEN CLEAN 38 MM Btu/h, LESS THAN 1/2 WHEN FOULED
- LOSS OF TRS STRIPPING EFFICIENCY → ODOUR
- FREQUENT CLEANING → DOWNTIME, ENVIRONMENTAL ISSUE, **NUISANCE**

STRIPPER PREHEATER RECONF'N – KEY DESIGN ISSUES

- REDUCE FOULING → MINIMUM VELOCITY 3 FPS REQUIRED, CONVERT ALL 4 SHELLS FROM 2 PASSES TO 4 PASSES
- ADDING 2 CHANNEL PARTITION PLATES → LOSS OF SURFACE AREA (42 TUBES)
- UNEVEN TUBES PER PASS → 10% DIFFERENCE
- HIGHER PRESSURE DROP → EXISTING PUMP OK
- WORK COMPLETED DURING SHUTDOWN

2/4/2007

31

STRIPPER PREHEATER RECONFIGURATION-RESULTS

	BEFORE	AFTER
TUBE PASSES	2 x 230 TUBES	4 x 104.5 TUBES
TUBE VELOCITY FPS	1.9	4.2
LOSS OF HEAT TRANSFER	WITHIN 2 WEEKS	SHUTDOWN: TUBES ARE CLEAN
TUBE SIDE DELTA P PSI	4.0	18.8
CLEANING 2/4/2007	MONTHLY	BI-ANNUALLY 32

STRIPPER PREHEATER RECONF'N

2 ROWSOFTUBESPLUGGEDOFF

STRIPPER PREHEATER RECONF'N

TWO
 PARTITION
 PLATES ADDED

4. LIQUOR COOLER AUGMENTATION

ISSUES

- UNDERSIZED LIQUOR COOLER → INSUFFICIENT HEAT RECOVERY → TALK OF DOUBLING UP IN PARALLEL
- TOO MUCH MILL WATER CONSUMPTION
- LOW OUTLET WATER TEMP FOR WASHERS
- BATCH PROCESS → THERMAL EXPANSION → PREMATURE
 WELD FAILURE → HAD TO ADD 2ND EJ
- FLOATING HEAD LEAKS → EXPANSION JOINT

2/4/2007 35

LIQUOR COOLER AUGMENTATION -KEY DESIGN ISSUES

- UNDERSIZED COOLER → ADDED A SECOND LARGER UNIT IN SERIES. NOT SAME SIZE, NOT IN PARALLEL
- REDUCE WATER USAGE → BOOST OUTLET TEMP TO 168°F
- BATCH CYCLICAL PROCESS → EJ FAILURE → DESIGN FOR 500,000 CYCLES

LIQUOR COOLER AUGMENTATION -**RESULTS**

	AFTER – 2 UNITS	BEFORE – 1 UNIT
AREA FT ²	2930 +4172 =7101	2930
Q MMBTU/H	96.9	65.8
MTD CORR FACTOR	0.973 / 0.950	0.972
WATER	2640 GPM, 125 → 200°F	1780 GPM, 41 → 111°F
LIQUOR 2/4/2007	2700 GPM, 280 → 205°F	2700 GPM, 252 → 200°F

LIQUOR COOLER AUGMENTATION

5. DIGESTER LIQUOR HEATER REPLACEMENT

ISSUES

- RAPID ORGANIC/INORGANIC SCALING → WASHING
 & DRILLING → LOSS OF TUBE METAL THICKNESS
- THERMAL EXPANSION → EXPANSION JOINT
- NO PIPING CHANGES TO SAVE \$
- LIQUOR CIRCULATION PUMP AT MAXIMUM
- LIMITED SPACE
- EXISTING SURFACE AREA OK

LIQUOR HEATER REPLACEMENT – KEY DESIGN ISSUES

- REDUCE FOULING → MINIMUM VELOCITY 8 FPS REQUIRED
- THERMAL EXPANSION → DESIGN JOINT FOR 70,000 CYCLES
- NO PIPING CHANGES → LESS TUBES, LONGER TUBES → DESIGNED WITH STEAM BUSTLE
- HIGHER PRESSURE DROP → EXISTING PUMP MARGINAL

DIGESTER LIQUOR HEATER REPLACEMENT - RESULTS

	NOW	ENGINEERING PHASE
AREA FT ²	1,664	1,675
TUBES	360 – 1.25"x16 BWG x 15'-9"	238 – 1.25"x16 BWG x 24'
TUBE VELOCITY FPS	5.4	8.2
TUBE SIDE DELTA P PSI	3.1	8.5

DIGESTER LIQUOR HEATER REPLACEMENT

6. BLEACH CAUSTIC EFFLUENT HEAT EXCHANGER

ISSUES

- REUSE EXISTING SECOND HAND UNITS → 2 SHELLS, EACH 6016 ft² PROVIDED BY (766) 0.75" X 15 GA X 40 FT, 1 TUBE PASS PER SHELL
- NOT ENOUGH TUBE PASSES → ACCELERATED FOULING

BLEACH CAUSTIC EFFLUENT HEAT EXCHANGER - FLOWSHEET

2300 GPM 170°F
B C EFFLUENT

2 SECOND HAND
HEAT EXCHANGERS
X GPM 160°F
WATER

2300 GPM T°F
B C EFFLUENT

X GPM 70°F
WATER

BLEACH CAUSTIC EFFLUENT HEAT EXCHANGER - HEAT DUTY Q

```
m = 2300 gpm *500.7 lb/h /gpm *0.981
= 1,130,000 lb/h
BY ITERATION, ASSUME t_2 = 124.3°F
Q_{EFFL} = 1,130,000 * 1 *(170 – 124.3)
= 51.6 MMBTU/h
```


BLEACH CAUSTIC EFFLUENT HEAT EXCHANGER - CHECK AREA

```
HOT SIDE (EFFLUENT) 170 \rightarrow 124.3

COLD SIDE (WATER) 160 \leftarrow 70

DIFFERENCE 10 - 54.3 = -44.3

LMTD = -44.3 / LN (10/54.3) = 26.2^{\circ}F

A = Q / (U_0 \Delta t)

= 12,030 \text{ ft}^2, SO CHECKS!
```

BLEACH CAUSTIC EFFLUENT HEAT EXCHANGER PRESSURE DROPS & VELOCITIES

- $\Delta P_T = 4.0 PSI$
- $\Delta P_S = 9.8 PSI$
- TUBE VELOCITY V = 3.3 FPS

BLEACH CAUSTIC EFFLUENT HEAT EXCHANGER - RESULTS

AREA FT ²	2 SHELLS x 6016
Q MMBTU/H	51.6
WATER	1160 GPM, 70 → 160°F
LIQUOR	2300 GPM, 170 → 124°F

CONCLUDING REMARKS

- WRONG: IF THE HX RUNS, LEAVE IT ALONE. RIGHT: MONITOR & OPTIMIZE FOR MAXIMUM ENERGY RECOVERY
- ADDING A HEAT EXCHANGER REQUIRES KNOWLEDGE
 OF BOTH THE PULP MILL PROCESS AND HEAT
 TRANSFER → HALF OF ALL HEAT EXCHANGERS ARE
 SPECIFIED INCORRECTLY!
- BEST TO HAVE AN ON-SITE PROCESS ENGINEER & AN OFF-SITE CONSULTANT TO ASSIST

QUESTIONS?

COMMENTS?

